Пуассона интеграл - определение. Что такое Пуассона интеграл
Diclib.com
Словарь ChatGPT
Введите слово или словосочетание на любом языке 👆
Язык:

Перевод и анализ слов искусственным интеллектом ChatGPT

На этой странице Вы можете получить подробный анализ слова или словосочетания, произведенный с помощью лучшей на сегодняшний день технологии искусственного интеллекта:

  • как употребляется слово
  • частота употребления
  • используется оно чаще в устной или письменной речи
  • варианты перевода слова
  • примеры употребления (несколько фраз с переводом)
  • этимология

Что (кто) такое Пуассона интеграл - определение

Пуассона интеграл
Найдено результатов: 84
Пуассона интеграл         

1) интеграл вида

,

где r и φ - полярные координаты, θ - параметр, меняющийся на отрезке [0; 2π]; П. и. выражает значения функции u (r, φ), гармонической внутри круга радиуса R, через её значения f (θ), заданные на границе этого круга. Функция u (r, φ) является решением задачи Дирихле для круга (см. Гармонические функции). П. и. был впервые рассмотрен С. Д. Пуассоном (1823). Строгая теория П. и. была создана Г. Шварцем (1869).

2) Интеграл

;

встречается в теории вероятностей и некоторых задачах математической физики. С. Д. Пуассон предложил весьма простой приём для вычисления этого интеграла. Впервые же этот интеграл был вычислен (1729) Л. Эйлером, поэтому называется также интегралом Эйлера - Пуассона.

Интеграл Пуассона         
Интегра́л Пуассо́на — общее название математических формул, выражающих решение краевой задачи или начальной задачи для уравнений с частными производными некоторых типов.
Гауссов интеграл         
Га́уссов интегра́л (также интегра́л Э́йлера — Пуассо́на или интегра́л Пуассо́на) — интеграл от гауссовой функции:
Уравнение Пуассона         
ЭЛЛИПТИЧЕСКОЕ ДИФФЕРЕНЦИАЛЬНОЕ УРАВНЕНИЕ В ЧАСТНЫХ ПРОИЗВОДНЫХ, ШИРОКО ИСПОЛЬЗУЮЩЕЕСЯ В ФИЗИКЕ
Пуассона уравнение; Уравнение Пуассона — Лапласа
Уравне́ние Пуассо́на — эллиптическое дифференциальное уравнение в частных производных, которое описывает
Пуассона коэффициент         
ПАРАМЕТР, ХАРАКТЕРИЗУЮЩИЙ УПРУГИЕ СВОЙСТВА МАТЕРИАЛА: ОТНОШЕНИЕ ОТНОСИТЕЛЬНОГО ПОПЕРЕЧНОГО СЖАТИЯ К ОТНОСИТЕЛЬНОМУ ПРОДОЛЬНОМУ РАСТЯЖЕ
Пуассона коэффициент

одна из физических характеристик материала упругого тела, равная отношению абсолютных значений относительной поперечной деформации элемента тела к его относительной продольной деформации. Введён С. Д. Пуассоном. При растяжении прямоугольного параллелепипеда в направлении оси х (рис.) имеют место вдоль этой оси удлинение , а вдоль перпендикулярных осей у и z - сжатие , , т. е. сужение его поперечного сечения. П. к. равен ν = ∣εy∣/εх или νzx = ∣εz∣/εх. Для изотропного тела величина П. к. не меняется ни при замене растяжения сжатием, ни при перемене осей деформации, т. е. νxy = νyx = νzx = ν. В анизотропных телах П. к. зависит от направления осей (т. е. νxy ≠ νyx ≠ νzx). П. к. вместе с одним из модулей упругости (См. Модули упругости) определяет все упругие свойства изотропного тела. Величина П. к. для большинства металлических материалов близка к 0,3.

Рис. к ст. Пуассона коэффициент.

Коэффициент Пуассона         
ПАРАМЕТР, ХАРАКТЕРИЗУЮЩИЙ УПРУГИЕ СВОЙСТВА МАТЕРИАЛА: ОТНОШЕНИЕ ОТНОСИТЕЛЬНОГО ПОПЕРЕЧНОГО СЖАТИЯ К ОТНОСИТЕЛЬНОМУ ПРОДОЛЬНОМУ РАСТЯЖЕ
Пуассона коэффициент
Коэффициент Пуассона (обозначается как \nu, \sigma или \mu) — упругая константа , величина отношения относительного поперечного сжатия к относительному продольному растяжению. Этот коэффициент зависит не от размеров тела, а от природы материала, из которого изготовлен образец. Коэффициент Пуассона и модуль Юнга полностью характеризуют упругие свойства изотропного материала. Безразмерен, но может быть указан в относительных единицах: мм/мм, м/м.
ПУАССОНА УРАВНЕНИЕ         
ЭЛЛИПТИЧЕСКОЕ ДИФФЕРЕНЦИАЛЬНОЕ УРАВНЕНИЕ В ЧАСТНЫХ ПРОИЗВОДНЫХ, ШИРОКО ИСПОЛЬЗУЮЩЕЕСЯ В ФИЗИКЕ
Пуассона уравнение; Уравнение Пуассона — Лапласа
уравнение с частными производными вида ?u= f, где ? - Лапласа оператор. Изучено С. Пуассоном.
Пуассоновский процесс         
ОРДИНАРНЫЙ ПОТОК ОДНОРОДНЫХ СОБЫТИЙ, ДЛЯ КОТОРОГО ЧИСЛО СОБЫТИЙ В ИНТЕРВАЛЕ А НЕ ЗАВИСИТ ОТ ЧИСЕЛ СОБЫТИЙ В ЛЮБЫХ ИНТЕРВАЛАХ, НЕ ПЕРЕСЕКАЮ
Пуассоновский поток; Пуассона поток; Поток Пуассона; Пуассоновский процесс; Пуассона процесс

случайный процесс, описывающий моменты наступления 0 < τ1 <...< τn <...<... каких-либо случайных событий, в котором число событий, происходящих в течение любого фиксированного интервала времени, имеет Пуассона распределение и независимы числа событий, происходящих в непересекающиеся промежутки времени.

Пусть μ(s, t) - число событий, моменты наступления которых τi удовлетворяют неравенствам 0 ≤ s < τi t, и пусть λ(s, t) - математическое ожидание μ(s, t). Тогда и П. п. при любых 0 ≤ s1 < t1 s2 < t2 ≤... ≤ sr < tr случайные величины μ(s1, t1), μ(s2, t2),... μ(sr, tr) независимы и вероятность того, что μ(s, t) = n, равна

e-λ (s, t) [λ(s, t)] n /n!.

В однородном П. п. λ(s, t) = a (t - s), где а - среднее число событий в единицу времени, расстояния τn - τn-1 между соседними моментами τn независимы и имеют Показательное распределение с плотностью ae-at, t ≥ 0.

Если имеется много независимых процессов, описывающих моменты возникновения некоторых случайных редких событий, то суммарный процесс при определённых условиях в пределе даёт П. п.

П. п. представляет собой удобную математическую модель, которая часто используется в различных приложениях теории вероятностей. В частности, с помощью П. п. описывается поток требований (например, вызовов, поступающих на телефонную станцию, выездов медицинских машин скорой помощи при транспортных происшествиях в большом городе) в массового обслуживания теории (См. Массового обслуживания теория).

Обобщением П. п. является пуассоновское случайное распределение точек на плоскости или в пространстве, при котором число точек в любой фиксированной области имеет распределение Пуассона (со средним, пропорциональным площади или объёму области) и числа точек в непересекающихся областях независимы. Это распределение часто используется при расчётах в астрономии, физике, экологии, технике и т.д.

Лит.: Феллер В., Введение в теорию вероятностей и ее приложения, пер. с англ., т. 1-2, М., 1967.

Б. А. Севастьянов.

Пуассона уравнение         
ЭЛЛИПТИЧЕСКОЕ ДИФФЕРЕНЦИАЛЬНОЕ УРАВНЕНИЕ В ЧАСТНЫХ ПРОИЗВОДНЫХ, ШИРОКО ИСПОЛЬЗУЮЩЕЕСЯ В ФИЗИКЕ
Пуассона уравнение; Уравнение Пуассона — Лапласа

уравнение с частными производными вида Δu = f, где Δ -оператор Лапласа:

При n = 3 этому уравнению удовлетворяет Потенциал u (х, у, z) объёмных масс, распределённых с плотностью f (x, у, z)/4π (в областях, где f = 0 потенциал u удовлетворяет уравнению Лапласа), а также потенциал объёмно распределённых электрических зарядов. При этом плотность распределения f должна удовлетворять известным требованиям гладкости (например, условию непрерывности частных производных). Если функция f отлична от нуля лишь в конечной области G, ограничена и имеет непрерывные частные производные первого порядка, то при n = 2 частное решение П. у. имеет вид:

а при n = 3:

где r (А, Р) - расстояние между переменной точкой интегрирования А и некоторой точкой Р. В более подробной записи

V (х, у, z) =

Решение краевых задач для П. у. сводится подстановкой к решению краевых задач для уравнения Лапласа Δω = 0.

П. у. впервые (1812) было изучено С. Д. Пуассоном.

НЕОПРЕДЕЛЕННЫЙ ИНТЕГРАЛ         
ОПЕРАЦИЯ, ОБРАТНАЯ К ПРОИЗВОДНОЙ, - ВОЗВРАЩАЕТ КЛАСС ФУНКЦИЙ
Неопределенный интеграл
см. Интегральное исчисление.

Википедия

Интеграл Пуассона

Интегра́л Пуассо́на — общее название математических формул, выражающих решение краевой задачи или начальной задачи для уравнений с частными производными некоторых типов.